(04 Marks)

Give the equivalent circuit of UJT.

First/Second Semester B.E. Degree Examination, January 2013 **Basic Electronics**

Tim	e: 3	hrs. Max. Marks:10	0
Not	te: <i>1</i> .	. Answer FIVE full questions choosing at least two from each part.	
	<i>2</i> .	Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.	
	3	Answers to objective type questions on sheets other than OMR will not be valued.	
1	a.	PART - A Choose the correct answer: (04 Mari	(S)
		i) A device which allows the current flow in one direction but does not allow it in the opposite direction is called	
		(A) Transistor (B) Filter (C) Regulator (D) Rectifier.	
		ii) The capacitance of a forward biased p - n function is called (A) Diffusion (B) Conventional (C) Drift (D) Transition	
		iii) The zener power dissipation is given by the product of	
		(A) V_R , I_Z (B) V_F , I_Z (C) V_Z , I_Z (D) None of these	
		iv) The maximum efficiency of full wave rectifier is (A) 40.6% (B) 60.4% (C) 78.5% (D) 81.2%.	
	b.		ure.
	0.	(05 Mar	
	c.	With a circuit diagram, explain the working of a full wave rectifier. Draw relevant waveforms. (06 Mar	
	d.	A 9V reference source is to be designed using a zener diode and a resistor connected in series to a 30V supply. So suitable components and calculate the circuit current when the supply voltage drops to 27V. Assume $I_{ZT} = 200$	mA.
		(05 Mai	·ks)
2	a.	Choose the correct answer: (04 Mar)	ks)
-	ш.	i) A transistor is cutoff when	ĺ
		(A) Both emitter and collector function reverse biased	
		(B) The emitter function is reversed biased but the collector function is forward biased.(C) Both emitter and collector function are forward biased.	
		(D) The emitter function is forward biased but the collector function is reversed biased.	
		ii) If $\alpha = 0.95$, than the value of β of the transistor is	
		(A) 0.05 (B) 19 (C) 100 (D) 120	
		iii) The output characteristics of a CE configuration is a graph between (A) V_{BE} , I_B (B) V_{BE} , V_{CE} (C) V_{CE} , I_C (D) V_{BE} , I_E	
		iv) The Q – point is also known as	
		(A) Open point (B) Operating point (C) D.C. point (D) A.C point.	
	b.	Explain the working of a current amplification using transistor. (05 Mai Explain with the help of circuit diagram the working of input and output characteristics of transistor in CB configuration.	
	c.	(07 Ma	rks)
	d.	For a certain transistor circuit, $I_C = 12.42 \text{mA}$ and $I_B = 200 \mu\text{A}$, find i) IE ii) α and β of transistor. (04 Ma	rks)
3	a.	Choose the correct answer: (94 Ma	rks)
		 i) In the biasing circuit, the one which gives most stable operating point. (A) Base bias (B) Collector to base bias (C) Voltage divider bias (D) None of these. 	
		(A) Base bias (B) Collector to base bias (C) Voltage divider bias (D) None of these. ii) Stability factor S for base bias circuit is	
		(A) $S = 1 + \beta$ (B) $S = 1 - \beta$ (C) $S = 1/(1 - \beta)$ (D) $S = 1/(1+\beta)$	
		iii) Diode can be used for compensation of changes in voltage divider bias circuit	
		(A) V_{BE} (B) V_{CE} (C) V_{CC} (D) V_{E} iv) In emitter bias circuit is connected between emitter and ground.	
		(A) Inductor (B) Capacitor (C) Resistor (D) Diode	
	b.	With a circuit diagram, explain the operation of collector – to base bias circuit. (08 Ma	rks)
	c.	The voltage divider bias circuit has $V_{CC}=15V$, $R_1=6.8k\Omega$, $R_2=3.3k\Omega$, $R_C=900\Omega$, $R_E=900\Omega$ and $h_{FE}=50$, $V_{BE}=0.7V$. Find the levels of V_E , I_B , I_C , V_{CE} and V_C . Draw the DC load line and mark the Q point on that. (08 Ma)	rks)
		Choose the correct answer:	,
4	a.	i) SCR is a device	Í
		(A) NPN (B) PNP (C) PNPN (D) PNN	
		ii) SCR crow bar circuit is used for protection against (A) under voltage (B) over current (C) under current (D) over voltage.	
		(A) under voltage (B) over current (C) under current (D) over voltage. iii) The intrinsic stand – off ration of UJT	
		(A) must be less than unity (B) must be greater than unity (C) must be zero (D) must be negative	e
		iv) FET is acontrolled device.	
	1.	(A) Voltage (B) Current (C) Power (D) None of these Explain the working of two transistor model of SCR.	rks)
	b. c.	Explain with a neat figure the construction of a P – channel JFET. (06 Ma)	-

PART – B

5	a.	Choose the correct answer:		(04 Marks)
		i) In an oscillator we use feedback. (A) Positive (B) Negative	(C) Neither	(D) Unity gain
		ii) The two Barkhausen conditions to be satisfied by osc $(A) A\beta \le 1$, shift = 0^0 $(B) A\beta \ge 1$, shift = 0^0		(D) $ A\beta \ge$, shift = 180°
		iii) In RC coupled amplifier the d.c. component is block	ed by	
		(A) load resistance R_L (B) coupling capaciton iv) $f_1(f_L)$ and $f_2(f_H)$ are known as frequencies	r, C_C (C) R_B	(D) the transistor
	b.	(A) half (B) half power With the help of circuit diagram, explain the working of a	(C) decibel	(D) mid band
	c.	List the advantages of negative feedback.	NC coupled single state CE amplifie	et. (06 Marks) (05 Marks)
	d.	Calculate the value of an inductor to be used in Colpitt's of $C_1 = 100$ pf and $C_2 = 50$ pf.	scillator to generate a frequency of 1	0MHz. Assume the values (05 Marks)
6	a.	Choose the correct answer:		(04 Marks)
		i) The ideal value of CMRR is (A) 90dB (B) 2 × 10 ⁵	(C) 0	(D) ∞
		ii) The PSRR is generally measured in	(0)	(D) w
		(A) dB (B) mV/V	(C) μV/V	(D) V/μS
		iii) The gain of voltage follower is	(C) negative	(D) vonite
		iv) If we apply a square waveform to a differentiator, the		(D) unity
		(A) cosine wave (B) ramp	(C) sine wave	(D) train of impulses
	b.	Give the ideal op-amp characteristics.		(05 Marks)
	C.	With the help of circuit diagram, explain the working of ar	op-amp used as integrator.	(06 Marks)
	d.	Design an adder circuit using op – amp to obtain an output are the inputs. Select $R_{\rm f} = 10 k\Omega$	expression $\mathbf{v}_0 = -(0.1\mathbf{v}_1 + 0.3\mathbf{v}_2 + 0.3v$	20 \mathbf{v}_3), where \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 (05 Marks)
7				
7	a.	Choose the correct answer:		(04 Marks)
7	a.	Choose the correct answer: i) Over modulation exists when modulation index is (A) 1 (B) 0	(C) >1	,
7	a.	 i) Over modulation exists when modulation index is	an AM wave is	(04 Marks) (D) < 1.
7	a.	 i) Over modulation exists when modulation index is	an AM wave is (C) $P_T = P_C (1+(m^2/4))$,
7	a.	 i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) P_C = P_T (1+(m²/4)) (B) P_C = P_T (1+(m²/2)) iii) The amplitude of both the side bands in an AM wave 	an AM wave is (C) $P_T = P_C (1+(m^2/4))$	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$
7	a.	i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) $P_C = P_T (1+(m^2/4))$ (B) $P_C = P_T (1+(m^2/2))$ iii) The amplitude of both the side bands in an AM wave (A) $E_C^2/2m$ (B) $m^2E_C/2$	an AM wave is	(D) < 1.
7	a.	i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) $P_C = P_T (1+(m^2/4))$ (B) $P_C = P_T (1+(m^2/2))$ iii) The amplitude of both the side bands in an AM wave (A) $E_C^2/2m$ (B) $m^2E_C/2$ iv) Hexadecimal and octal numbering systems are similar	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2 E_C^2/4$
7	a. b.	i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) $P_C = P_T (1+(m^2/4))$ (B) $P_C = P_T (1+(m^2/2))$ iii) The amplitude of both the side bands in an AM wave (A) $E_C^2/2m$ (B) $m^2E_C/2$ iv) Hexadecimal and octal numbering systems are similar (A) 9 digits (B) 8 digits	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits.
7		 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2 E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks)
7	b.	i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) $P_C = P_T (1+(m^2/4))$ (B) $P_C = P_T (1+(m^2/2))$ iii) The amplitude of both the side bands in an AM wave (A) $E_C^2/2m$ (B) $m^2E_C/2$ iv) Hexadecimal and octal numbering systems are similar (A) 9 digits (B) 8 digits Explain the need for modulation.	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2 E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks)
8	b. c.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2 E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (06 Marks) (04 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) P_C = P_T (1+(m²/4)) (B) P_C = P_T (1+(m²/2)) iii) The amplitude of both the side bands in an AM wave (A) E_C²/2m (B) m²E_C/2 iv) Hexadecimal and octal numbering systems are simila (A) 9 digits (B) 8 digits Explain the need for modulation. With the help of block diagram, explain the working of sup Perform the following decimal subtraction using 9's comp Choose the correct answer: i) For EX – NOR gate the output is 1 if (A) even number of inputs is 0 	an AM wave is $(C) P_T = P_C (1+(m^2/4))$ is $(C) mE_C/2$ r for the first $(C) 7$ digits oer heterodyne receiver. element method: i) $49-24$ ii) 32	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (06 Marks) (04 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (06 Marks) (04 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) P_C = P_T (1+(m²/4)) (B) P_C = P_T (1+(m²/2)) iii) The amplitude of both the side bands in an AM wave (A) E_C²/2m (B) m²E_C/2 iv) Hexadecimal and octal numbering systems are similated. (A) 9 digits (B) 8 digits Explain the need for modulation. With the help of block diagram, explain the working of supperform the following decimal subtraction using 9's compound of the correct answer: i) For EX – NOR gate the output is 1 if (A) even number of inputs is 0 (C) odd number of inputs is 0 ii) Which of these are universal gates? 	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (04 Marks) (04 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (06 Marks) (04 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (04 Marks) (04 Marks)
	b. c. d.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (04 Marks) (04 Marks) (D) NOT. AND, OR (D) carry 1, sum 1
	b. c. d.	 i) Over modulation exists when modulation index is	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (04 Marks) (04 Marks)
	b. c. d.	i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) P _C = P _T (1+(m²/4)) (B) P _C = P _T (1+(m²/2)) iii) The amplitude of both the side bands in an AM wave (A) E _C ²/2m (B) m²E _C /2 iv) Hexadecimal and octal numbering systems are similar (A) 9 digits (B) 8 digits Explain the need for modulation. With the help of block diagram, explain the working of supperform the following decimal subtraction using 9's composite correct answer: i) For EX – NOR gate the output is 1 if (A) even number of inputs is 0 (C) odd number of inputs is 0 ii) Which of these are universal gates? (A) only NOR (B) only NANS iii) The result of binary addition 1 + 1 + 1 is (A) carry 0, sum 0 (B) carry 0, sum 1 iv) A half adder hasinputs andoutputs. (A) 1, 1 (B) 1, 2 State Define Morgan's theorems. Simplify the following Boolean expressions: i) Y = AB +	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (04 Marks) (04 Marks) (D) NOT. AND, OR (D) carry 1, sum 1 (D) 2. 2
	b. c. d. a.	i) Over modulation exists when modulation index is (A) 1 (B) 0 ii) The relation between carrier power and total power in (A) $P_C = P_T (1 + (m^2/4))$ (B) $P_C = P_T (1 + (m^2/2))$ iii) The amplitude of both the side bands in an AM wave (A) $E_C^2/2m$ (B) $m^2E_C/2$ iv) Hexadecimal and octal numbering systems are similar (A) 9 digits (B) 8 digits Explain the need for modulation. With the help of block diagram, explain the working of supperform the following decimal subtraction using 9's composite the correct answer: i) For EX – NOR gate the output is 1 if (A) even number of inputs is 0 (C) odd number of inputs is 0 ii) Which of these are universal gates? (A) only NOR (B) only NANS iii) The result of binary addition $1 + 1 + 1$ is (A) carry 0, sum 0 (B) carry 0, sum 1 iv) A half adder has inputs and outputs. (A) 1, 1 (B) 1, 2	an AM wave is	(D) < 1. (D) $P_T = P_C (1+(m^2/2))$ (D) $m^2E_C^2/4$ (D) 6 digits. (06 Marks) (06 Marks) (04 Marks) (04 Marks) (D) NOT. AND, OR (D) carry 1, sum 1 (D) 2. 2
